Title of the thesis
PhArmaceutical Solid State devices AGainst diabetEs worsening

Acronym
PASSAGE

Reference number
007

Hosting institution
Université de Lille
Website: https://www.univ-lille.fr/home/

Hosting research unit 1
Name: U1008 Advanced Drug Delivery Systems
Acronym: U1008
Identification number:
Address: Université de Lille
College of Pharmacy
3, rue du Professeur Laguesse
59006 Lille, France
Website: http://u1008.univ-lille2.fr/

Hosting research unit 2
Name: Unite Matériaux Et Transformations
Acronym: UMET
Identification number: UMR 8207
Address: Université de Lille
Cité scientifique Bâtiment C6 59655
Villeneuve d’Ascq

Principal supervisor
Name: Susanne
Surname: MUSCHERT
Email: Susanne.muschert@univ-lille.fr
Phone: +33 6 76 81 11 38

Co-supervisor
Name: Emeline
Surname: DUDOGNON
Email: emeline.dudognon@univ-lille.fr
Phone: +33 6 10 05 20 74

Thesis information

Keywords
Polymer blends, hot-melt extrusion, antidiabetic drugs, physical state, storage stability

Abstract
We are seeking for a PhD candidate eager to work in an international and interdisciplinary project for three years. The project PASSAGE lies on the interface Pharmaceutics/Physics and will benefit from a collaboration between two laboratories of the University of Lille:
• INSERM U1008: Advanced Drug Delivery Systems, located in Lille
• UMR CNRS 8207: Unité Matériaux Et Transformations (UMET), located in Villeneuve d’Ascq.

Dr. Susanne Muschert (pharmacist) and Dr. Emeline Dudognon (physicist) will jointly supervise the PhD thesis.

The scientific approach aims to formulate diabetes mellitus type II drugs to treat hyperglycaemia into a once-daily dosage form by the means of hot-melt extrusion. The model drugs show low bioavailability due to short half-lives, leading to numerous daily dose intakes (of a conventional dosage form) and fluctuations within the drug-plasma concentrations, thus the patient’s compliance is in decline with this long-term treatment. Controlled release dosage forms, where the active pharmaceutical ingredient (API) is embedded within a polymer matrix, can help to overcome these hurdles. However, the physical state of the API is of outmost importance within this kind of systems, since the drug release kinetics and the bioavailability crucially depend on the physical state of the drug within the polymer matrix, being either a disordered state (amorphous) or a crystalline one. The main research objective of PASSAGE is to investigate the impact of processing parameters of the rather novel pharmaceutical production technique of hot-melt extrusion with polymer blend matrices on the...
The highly cross-linked working steps will take place in Lille at the Inserm U1008 site for formulation, drug dissolution and quantification studies, whereas the in-depth physical state analysis of the polymer matrix and the API will take place in the UMET lab in Villeneuve d'Ascq (both situated in the same metropole). An intersectorial collaboration will take place with Bioneer:Farma, situated in Copenhagen (Denmark) and specialised in in-vitro dissolution studies under bio-relevant conditions. But also Leistritz Extrusionstechnik will offer the opportunity of an immersion in the industrial world, this extrusion equipment manufacturer is implanted in Nuremberg (Germany).

In addition, a secondment in the research lab of Prof. DeBeer at the University of Ghent (Belgium) is planned. He is an internationally recognized expert in process analytical technology (PAT) applications.

Expected profile of the candidate

- University studies of Pharmaceutics (ideally specialized in formulation/pharmaceutical technology), Engineering (specialized in pharmaceutical or nutritional process technology) or Physics (ideally specialized in disordered systems).
- Capacity to work in a multidisciplinary team and in various environments.
- Fluent English skills (written and spoken).
- Good organizational and communicational skills.

Application procedure & Eligibility criteria

The application procedure and eligibility criteria are detailed on the European doctoral programme PEARL website www.pearl-phd-lille.eu. The funding is managed by the I-SITE ULNE foundation which is a partnership foundation between the University of Lille, Engineering schools, research organisms, the Institut Pasteur de Lille and the University hospital.

The application file will have to be submitted before March 31, 2021 (10:00 AM - Paris Time) and emailed to the following address: international@isite-ulne.fr.

Net salary and Lump Sum

A net salary of about €1,600 + €530 per month to cover mobility, travel and family costs.